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Waves in a viscous liquid curtain 

By S .  P. LIN AND G. ROBERTS 
Clarkson College of Technology, Potadam, New York 13676 

(Received 10 November 1980 and in revised form 17 March 1981) 

The wave motion created by a small obstacle placed in a viscous liquid curtain which 
falls steadily between two vertical guide wires is studied experimentally. The distur- 
bances introduced by the obstacle propagate in the curtain to form two distinctive 
stationary lines of constant phase; one corresponds to the sinuous mode and the other 
to the varicose mode. The observed wave motion compares very well with that 
predicted by the theory of Lin (1980). The observed angle between the tangent at  any 
point on the line of constant phase and the vertical are used to infer the dynamic sur- 
face tension of a rapidly moving surface. A considerable differencebetween thedynamic 
surface tension and the usual static surface tension is found for a liquid solution. 
However, no measurable difference is found for a pure liquid at the flow rates used in 
our experiments. 

1. Introduction 
The dynamics of thin sheets of liquids is of considerable scientific and technological 

importance. The subject was studied as long ago as 1833 by Savart. Several early 
works in this area were discussed by G. I. Taylor (1959, 1960) in his ext'ensive investi- 
gations of the subject. Some of the more recent works on the topic in connection with 
atomization, combustion, spray coatings, and curtain coatings are referenced in the 
recent work of Lin (1980). By use of linear theory, Lin investigated the stability of a 
thin sheet of viscous liquid flowing between two vertical guide wires. He showed that 
the disturbances can be separated into varicose and sinuous waves. The varicose waves 
are always damped but the sinuous waves, when their group velocity is directed 
upstream, are responsible for the curtain instability. The group velocity tends to 
propagate upstream only when the Weber number of the curtain flow exceeds 4. The 
predicted critical Weber number agrees completely with that found experimentally by 
Brown (1961). He observed that a stable liquid curtain can be formed only if the Weber 
number is below Q. When the Weber number is raised beyond this critical value, by 
reducing the discharge rate for example, the liquid curtain disintegrates. 

In the present work, we show that, if disturbances are introduced continuously into 
a stable liquid curtain, the sinuous and varicose waves predicted by Lin will sort 
themselves out to form two distinctive stationary lines of constant phase. The predicted 
stationary wave fronts compare very well with experimental observations based on 
two different techniques. Easily measurable geometric properties of the stationary 
waves are then used to infer the dynamic surface tension of rapidly moving liquid 
surfaces. The considerable difference between the surface tension of a moving 
liquid solution and that of the same liquid in a thermodynamic equilibrium has been 
demonstrated. 
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FIGURE I. Definition sketch. 

2. Curtain waves 
Consider the steady flow in the Newtonian liquid curtain shown in figure 1.  Brown 

(1961) gave the following empirkal equation for the average velocity distribution 
along the curtain 

(1) u:(XJ = (&/do)'+ 2gX1- C(4vg)8, 

where U, is the average velocity in the direction of the Cartesian co-ordinate axis XI 
which has the same direction as the gravitational acceleration g, Q is the volumetric 
flow rate per unit width of the curtain, v is the kinematic viscosity, C is a constant and 
do is the maximum curtain thickness. In  terms of the dimensionless variables defined 
by U, = (4vg)iU and X, = (4v)*g-*X, (1) can be written as 

U 2 ( 5 )  = U'(0) f 2 x  - c. 
Brown found that the local bulk velocity given by this equation compares very well, 
except near the slot, with that predicted by a nonlinear differential equation derived 
by G. I. Taylor and equally well with Brown's own experiments if C is chosen to be 4. 
Brown observed that, when Q is reduced to a value such that the Weber number of the 
flow becomes less than &, the curtain will distintegrate. The Weber number is defined by 

W = Tdo/pQ2, 

where T is the surface tension, and p is the fluid density. This critical Weber number 
has been confirmed theoretically by Lin (1980) who applied linear stability analysis 
to a liquid curtain of a small thickness such that 

6 = (g2/4~)4 (dg/Q) < 1. 
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FIGURE 2. Free edges created by an obstable. 

For such a curtain Lin showed that the flow is locally parallel, to the first-order 
approximation, and the detailed knowledge of the velocity variation given by (1) is 
not needed in the linear stability analysis. The above inequality is satisfied by most of 
the liquid curtains encountered in our experiments to be described shortly. 

Brown also reported that a stable curtain with W < 4 can be broken to form an 
inverted V-shaped free edge by poking completely through the curtain with an 
obstacle as shown in figure 2. However we found that if a wettable rodisplacedinto the 
curtain carefully enough to avoid the meeting of the two free surfaces, the curtain will 
not break. In place of the free edge a set of stationary waves now appears on the 
curtain as shown in figure 3. We show presently that these wave patterns can be 
predicted by use of the results of Lin’s stability analysis. 

Lin showed that there exist two independent modes of wave motion in a liquid 
curtain. One mode is sinuous and the other is varicose. The disturbances which displace 
the two free surfaces locally in the same direction perpendicular to the plane of the 
page create the sinuous waves. The disturbances which symmetrically displace the two 
free surfaces in the opposite directions create the varicose waves. More general distur- 
bances may be constructed from the superpositions of all Fourier components of these 
two modes. The wave characteristics of the varicose and sinuous modes are governed 
respectively by the dispersion equations (13) and (17) of Lin’s work (henceforth 
referred to as I). In a stable curtain such that W < 4, both modes of disturbances of 
small amplitudes decay exponentially. According to  the numerical solutions of ( 13) 
and (17) in I, the exponential decay rates decrease with the wavelength. Therefore 
longer waves are more readily observable. Hence, for the purpose of describing the 
observed wave fronts, we need only the asymptotic solution of (13) and (17) in I for 
long waves. 

15-2 
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FIGURE 3. Stationary waves in a gelatine solution a t  40.6 "C, flow rate 21.3 cm3/s; the distance 
between the lower edge of the coating lip and the obstacle is 5.3 cm, (a )  photograph, ( b )  theoretical 
curve drawn on the same scale as photograph. 

2. I. Sinuous waves 

The asymptotic -solution of (17) in I for two-dimensional long sinuous waves pro- 
pagating along the curtain length is given by (18) of I, i.e. 

C~ = Ti_+ (2W/h)*+O(a2) ,  (2) 

aci = - (h2/6R) a*, (3) 
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where c, and ii are respectively the wave speed and the local curtain velocity both in 
the unit of Go = Q/do, h is the local curtain thickness non-dimensionalized with do, 
aci is the exponential decay rate in the unit of Goldo, and a and R are respectively the 
wavenumber and the Reynolds number defined by 

where h is the wavelength. 
According to ( 2 )  the sinuous wave is nondispersive to the first-order approximation, 

and its speed relative to the moving fluid is & (2W/h)4. The plus and minus signs 
correspond to the waves propagating respectively in the downstream and the upstream 
directions. Only the upstream-propagating waves can be held stationary in space. 
Along the stationary wave fronts appearing in figure 3, the speeds of the upstream- 
propagating waves are just balanced by the local fluid velocity component normal to 
the wave fronts. Thus, along a given phase of the stationary wave, we must have 

q s i n ( + O ) = + ( Q / d o ) ( 2 W / h ) *  ( O G  8<7r), 

a = 2nd0/h,  R = iilodo/v, 

i.e. 

sin 8 = (2T/p&U,)J, (4) 

where 8 is the angle between the tangent at any point on the stationary wave front 
and the vertical. In the Cartesian co-ordinates (x ,  x )  = ( X I ,  &)/do the condition ( 4 )  
can be written as 

d Z - & (  2T )*. 
dx- pQU1-2T 

The solution of this differential equation with the boundary condition z = 0 at x = m is 

[${f+) -fW} + 4W{f*(x)  -fJ(m)}I, (5) 

where 

and m is the distance between the y axis and the point where the two branches of the 
stationary wave meet. m will be taken from the experiment as it cannot be predicted 
by use of the present results based on the linear theory. 

2.2. Varicose waves 

The dimensionless speed and damping rate of long varicose waves are obtained in I .  
They are respectively given by 

2 Wh 
R - (k)2 > 0,) 

and aci = --a2, if 

C ~ = U  and a c i = - - a 2 k a 2 [ ( i ) 2 - T ] ,  2 W h  4 if T-(i)2<~. U'h J 
R 

It is obvious from (6) that stationary varicose waves can be observed only when 
Wh/2 > (2/R)2. Comparing the damping rates given in (3) and (6) we expect that it 
will be more difficult to observe the varicose waves than the sinuous ones, since the 
former is more rapidly damped. Moreover, the varicose waves are dispersive. It is more 
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difficult to obtain the curves of constant phase for this mode. We use here the approxi- 
mate method of Rayleigh (1 893). 

The varicose waves are held stationary €or the same reason the sinuous waves are. 
Thus, along a given phase of the stationary varicose waves, we have 

Ulsin( a8) = i- ( 7 )  

The stationary wave is the envelope of varicose waves of different wavelengths A but 
of the same phase E - e0, where e0 is a constant reference phase. A and e - e0 are related 
by (cf. figure 1)  

(8 )  

where P, is the distance measured normally from any point on the curve of constant 
phase to the line of sources which produce waves. The line of wave source in the present 
problem is the centreline of the wake behind the obstacle shown in figures 1 and 3. The 
phase at  this centreline will be referred to as q,. In the polar co-ordinates ( r , $ ) ,  as 
shown in figure 1, P, is given by 

where r is the radial distance rl measured from the centre of the obstacle divided by do. 

h = 27fPe/(E - E o ) ,  

P, = do r sin $/cos 8, (9) 

Substituting (8) and (9) into ( 7 ) ,  we have 

rsin$tanO = ( E - - E ~ )  

This equation can be written in the Cartesian co-ordinates as 

dz 2 1  4 
2- ax = ( E -  € 0 )  [&-(;) 2] . 

Consider a set of n curves of constant phase each corresponding to a stationary wave 
crest. Then E - e0 = 2nn and (10) can be integrated to give 

2 1  4 
z2 = [& - (i) F] dx, 

where x, is the distance measured from the origin along the x-axis to the apex of each 
curve of constant phase. It should be pointed out that (1 1)  may not be an accurate 
description in a region upstream of the obstacle where 6 -+ 4~ and $ -+ n. It follows 
from the definition of a, (8) and (9) that in this region 

d E - E o  

P, 
01 = -O(E-eo) N -* T 

Thus if the stationary wave crests cut the x-axis a t  small r such that 2n7r/r is not small, 
then the condition a < 1 which was used to arrive at  (1 1) is violated. In this region the 
complicated full dispersion relation (13) given for finite a in I must be used. However, 
short waves are so rapidly damped that it would be difficult to observe in practice. It 
should also be pointed out that the lower integration limit x, in (1 1) must be provided 
from experiment, as it cannot be determined precisely with the present linear theory. 
Note that, if the curtain thickness were uniform, the integrand in (1  1) would have been 
a constant and the resulting curves of constant phase would have formed a set of 
parabola of focal lengths nn[ W / 2  - (2/R)2]*.  
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3. Experiments with glycerine 
The purpose of the experiment is to observe the stationary wave fronts in a liquid 

curtain predicted by the theory. As the wave patterns depend crucially on the curtain 
velocity distribution, the latter must also be accurately measured. The confirmed wave 
properties will then be used as the basis for dynamic surface tension measurements. 

3.1. Experimental technique 

To produce a steady flow in a vertical thin sheet of liquid, a slot of length 7.6 cm, depth 
0.4 cm and width 0.074 cm was constructed and a system for pumping liquid through 
it built up as shown in figure 4. This apparatus is a slight modification of the system 
used by Brown (1961). The glycerine of known density, viscosity, surface tension and 
temperature is pumped through the slot from a reservoir by a pump which was coupled 
to a variable-speed motor. The density is determined by a hydrometer, viscosity by a 
falling-ball viscometer and the surface tension by a Rosano surface tensiometer. The 
liquid leaving the slot is guided by two vertical wires of 0.1 cm diamet,er. These wires 
are 7-6 cm apart and are attached to the slot. The liquid curtain formed between these 
two wires is the test section. The curtain flow reaches steady state when the liquid level 
in the constant-head tank ceases to fluctuate. The st'eady volumetric discharge rate is 
determined as the quotient of the total liquid volume collected in a flask to the time of 
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FIGURE 5. Photograph of entrained bubbles for velocity determination. Shutter 
speed 11125 s, glycerine temperature 21 "C, flow rate 21 cm3/s. 

collection. Flexible Tygon tubings of 1-57 cm diameter are used to connect the constant- 
head tank and the collection reservoir to the pump. 

To measure the local curtain velocity, we allow sufficient numbers of bubbles to be 
entrapped in the fluid to be used as markers. The bubble entrainment can be achieved 
by first opening a valve near the top of the constant-head tank, and closing it when the 
level of the glycerine was near the valve. The pump motor speed was then reduced to 
a preselected setting, with care being taken to maintain a steady curtain. The bubbles 
are illuminated by a 500 W projection lamp directed obliquely a t  the curtain from 
the front. Still photographs of bubbles are taken from the back of the curtain with 
sufficiently slow camera shutter speed so that the motion of the bubbles appear as 
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For flow rate 27 cm3/s 
Experimental Equation (1)  

32 28.8 
50 52.8 
64 68.9 
77 81.9 
93 93.1 
98 103.1 

107 112.2 
115 120.6 

For flow rate 54 cms/s 
Experimental Equation ( 1 )  

55 43.4 
63 62-0 
78 76.1 
85 88.1 
94 98.6 

104 108.1 
110 116.8 
119 124.9 

TABLE 1.  Experimental and theoretical values of 77, in cm/s. 

short streak lines on the photographs. Typical bubble streaks can be seen in figure 5. 
The lengths of bubble streak lines are either measured directly from the photograph 
or from the projection of the photograph on a screen. The ratio of the length of any 
bubble streak line to the camera shutter time then gives the average local curtain 
velocity a t  the centre of the streak line in the curtain. This method will yield accurate 
average curtain velocity if the velocity across the curtain thickness does not change 
measurably. It will be shown in the next section that this was indeed the case. The 
shutter speed used was d5 second. This was thought to be the best compromise 
between a longer time which offers a better time resolution but a poorer spatial 
resolution associated with the longer bubble trace and a shorter time which offers a 
better spatial resolution but a poorer time resolution. 

The stationary wave pattern was produced by sticking an aluminium rod of 0.32 cm 
diameter through the liquid curtain a t  the mid-width. For the photographing of the 
standing waves, illumination was provided by a small desk lamp placed in front of 
the curtain and adjusted to produce the maximum contrast between the wave and the 
rest of the curtain. Some effort was made to align the axis of the camera lens perpen- 
dicularly to the liquid curtain, thereby minimizing error due to parallax. The angle 
between the tangents to the stationary waves and the vertical are either measured 
directly from the photographs or from the projection of the photograph on a screen. 

3.2. Results 
Three different discharge rates of 27, 36 and 54cm3/s were used to form a stable 
glycerine curtain. The temperature of glycerine was 27 "C for the two lower discharge 
rates and was 31 "C for the largest discharge rate. The measured density, viscosity and 
surface tension were respectively 1.26 gm/cm3, 8.1 poise and 65.3 dynes/cm a t  27 "C, 
and 1.25gm/cm3, 5-76 poise and 65 dynes/cm at 31 "C. Typical results of velocity 
measurements are given in table 1. The values of local velocity calculated from ( I )  are 
also given in the same table. The comparison is very good except in the region near the 
slot. For the lower discharge rate of 27 cm3/s, C in ( I )  was chosen to be 4 which is the 
same constant chosen by Brown. However, C was found to be 13-5 and 7, respectively, 
for the best fit between (1) and the experimental results for the cases of 54 cm3/s and 
36cm3/s. Certainly C is not a universal constant but is dependent on the initial 
curtain velocity U ( 0 ) .  The values of T mentioned earlier in this paragraph and the 
measured values of U,, instead of the calculated ones, were used in determining 13 from 
(4). Some typical results of the angle measurements are given in table 2. A typical 
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m \ 
FIUURE 6. Stationary waves in glycerine curtain a t  27 "C, 36 cm3/s, the distance between the 
slot and the obstacle is 6.10 em, (a )  photograph, ( b )  theoretical curve drawn on the same scale 
as photograph. 
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Flow rate 

27 
27 
36 
36 
36 
36 
54 
54 
54 

(em3/@ 
u, 

(cm/s) 
104 
112 
104 
109 
114 
121 
122 
129 
136 

TABLE 2 

Calculated 6' 
(degrees) 

32.0 
30.7 
27-4 
26.6 
26.0 
25.2 
20.2 
19.7 
19.2 

Measured 6' 
(degrees) 

32.0 
30.3 
28.5 
27-0 
26.3 
25.5 
21.8 
21.3 
20.0 

photograph of the stationary wave i s  given in figure 6 (a) .  The curve of constant phase 
obtained from (5) with U, given by (1) and C = 7 is, after being converted into a 
dimensional form, given in figure 6 ( b ) .  Only sinuous waves are visible in this experi- 
ment. It is seen from (3) and (6) that the varicose waves are more rapidly damped than 
the sinuous ones. It appears that the varicose waves are so quickly damped in the 
highly viscous glycerine that when their wave crests meet at  the line of constant phase 
they are too faint to be visible. However, they do appear in less viscous fluids as is 
shown in the next section. 

Equation (4) can also be used to determine the surface tension of a rapidly moving 
liquid which may be considerably different from that of a stagnant liquid. Substituting 
the measured values of 8, &, U, and p as input into (4)) we determined the so-called 
dynamic surface tension. The dynamic surface tension we found differs from the static 
surface tension we measured by use of the Rosano surface tensiometer only by 5 yo 
which is within the limit of our experimental error. Thus, it  appears that there is no 
measurable difference between dynamic and static surface tension for a pure liquid. 
This is actually not surprising, since the relaxation time of glycerine molecules in a 
falling curtain is much shorter than the lifetime of each element of moving surface on 
a curtain so that each surface is essentially in a thermodynamic equilibrium during its 
residence time. However, there is a significant difference between the dynamic and the 
static surface tensions of liquid solutions as will be shown in the next experiment. 

It should be pointed out that the condition for the validity of Lin's analysis, i.e. 
(g2/4v)* (d,2/&) < I, is satisfied in the above experiments. Our experiments also con- 
firmed the critical Weber number of + which was found experimentally by Brown (1961) 
and predicted recently by Lin (1980) for thin liquid curtains such that 8 < 1 .  

4. Experiments with gelatin solution 
4.1. Experimental technique 

The general layout of the present experiments is given in figure 7.  A gelatin solution is 
pumped from a tank to an inclined plane where it is distributed evenly across the width 
with a slot. At the end of the incline is attached a vertical plate 9.7 cm in width and 
1-4 cm in height. The liquid flows under the action of gravity over the incline and the 
attached vertical plate and is then guided by two vertical rods of 0-1 cm diameter to 
form a liquid curtain. The liquid leaves the guidance of the vertical rods to form a 
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FIGURE 7. Apparatus for producing a curtain of gelatin solution. 

V-shaped free edge before falling into a collection reservoir. The liquid is then pumped 
to the gelatin solution tank to complete a loop. 

The velocity of the curtain was measured at  different curtain lengths and at  locations 
sufficiently far from the guide rods. In order to measure the bulk curtain velocity, air 
was introduced slowly from an air compressor into the gelatin solution before it was 
pumped to the inclined plane, as shown in figure 7. This procedure produced small 
bubbles which were further reduced in size by a Kenics static mixer.? The micro- 
bubbles produced by this technique varied in size with a large enough population in 
the range of 50-150,um, which is sufficiently smaller than the curtain thickness. The 
velocity was measured by taking high-speed photographs at  about 4000-5000 framesls. 
The vertical field of view ranged from 0.8 to 0.84cm. The distance travelled by the 
bubble was plotted versus the time of travel, and the velocity was calculated by 
graphically measuring slopes. 

In order to measure surface velocities and compare them with the bulk velocities, 
polyethylene particles (polythene FN 500) were sprinkled on the surface as tracers. 
particles were observed to adhere to the surface and thus should reveal the actual 
surface velocity. Sprinkling the particles on the front surface was a simple task as the 
front surface of the curtain is formed early on the inclined plane. Adding the particles 
to the back surface of the curtain was more complicated and a syringe was used to 
eject the particles onto the back surface as it was formed. The method of measuring 
the surface velocity is identical with that of measuring the bulk velocity except that 
the tracer is different. 

The stationary wave pattern was produced by sticking a glass rod of 0.15cm 

t Brock, Esley, Inc. 445 East 2nd South, Salt Lake City, Utah 84111. 
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Time (sec/3937) 

FIGURE 8. Distance plotted against time travelled. 0, 116 pm bubble; 
A ,  89 ,urn surface particle. 

diameter through the liquid curtain. The stationary wave patterns were observed 
with the same method described in the previous section. 

4.2. Results 
The test fluid was a 12 yo gelatin solution of 40.6 "C, which is a Newtonian fluid for 
shear rates much smaller than 2000s-l. The density determined as the ratio of the 
weight to the volume of a given solution was 1*03g/cm3. The viscosity and the 
surface tension measured respectively with a falling-ball viscometer and the Wilhelmy 
surface tensiometer were 35 cP and 45 dyneslcm. The curtain discharge rate was 
21-3 cm3/s. Typical results of the distance travelled by tracers against time used in the 
velocity measurements are given in figure 8. The experimentally determined curtain 
velocities a t  various locations are given in table 3. The initial curtain velocity was 
16 cm/s. The local curtain velocities predicted by Brown's equation (1) with C = 4 
and by the free fall equation are also given in the same table. At very small curtain 
lengths, the free fall velocity was about 15 yo higher but Brown's equation predicts 
values only about 6 % higher than the measured velocity. At locations with large 
curtain lengths, the agreement between the measured velocity and velocity predicted 
(1)  is excellent. 

Measuring the slopes of the two curves which pass through the two set of data points 
in figure 8, we see that the difference between the surface and the bulk velocities, being 
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u, (cm/s) 

XI (cm) Measured Equation (1) Free fall d (pm) 2T/pQU, s 
1.47 48.7 51.7 56-1 448 1.22 0.082 
2.27 62.7 65.1 68.6 348 0.95 0.049 
4.73 93.1 95.2 97.6 235 0.64 0.023 
6.56 102.3 103.4 1054 213 0.58 0.019 
10.16 139.6 140.4 142.0 156 0.42 0.010 
10.99 147.5 146.0 147.7 148 0.40 0.009 

TABLE 3 

smaller than the experimental error of about 5 yo, is negligible. This supports the 
approximation used by G. I. Taylor in his derivation of a nonlinear differential equation 
governing the velocity variation along the curtain (see the appendix in Brown's 

Both sinuous and varicose waves are observed in this experiment. A typical wave 
pattern is shown in figure 3. The sinuous wave is more easily visible as it is less damped. 
Some typical values of the measured I3 for the sinuous mode are given in table 4, 
together with the corresponding measured local velocities and the values of 0 calcu- 
lated from (4) using the static value for T .  The measured values of 6 are larger than the 
calculated ones by about 20 % which is more than twice the estimated experimental 
error bound of about 10 %. This strongly suggests that the surface tension of a rapidly 
moving surface may differ considerably from that of a stationary surface. Assuming 
this conjecture t o  be true, we calculate the dynamic surface tension from (4) with the 
measured quantities p, Q, U, and I3 for the sinuous wave as input. The values of T thus 
calculated are given in table 4. Note that t'he inferred dynamic surface tension is about 
one and half times larger than the static tension of 45 dynes/cm obtained under a 
thermodynamic equilibrium situation. We conjectured that this is because the gelatin 
molecules act as surfactants to lower the surface tension (Antoniades & Lin 1980). 
It appears that the time required for the gelatin molecules to diffuse and adsorb a t  the 
curtain surface before reaching the equilibrium concentration is considerably longer 
than the residence time of the curtain surface. Consequently, the surface concentration 
of gelatin is considerably lower than that a t  equilibrium, when the surface tension 
reaches its minimum static value. If the surface solute concentration is indeed the 
main cause of the difference in the two surface tensions, then the dynamic surface 
tension will depend mainly on the curtain location and thus only on the local surface 
velocity in a given liquid curtain, but will not depend on the mode of disturbances. The 
wave patterns calculated from (5) and (11) respectively for the sinuous and varicose 
modes, with T taken to be the dynamic surface tension inferred from the sinuous wave 
relation ( 4 ) ,  are given in a dimensional figure 3 ( b ) .  Agreements appear excellent for 
both wave modes. This appears to support our conjecture. The significant difference 
between dynamic and stat'ic surface tension of solutions has also been found by 
Thomas & Potter (1975). Although their solute and flow differ from ours, the difference 
they found is of the same order of magnitude as ours. 

Local values of twice the Weber number, i.e. BTIpQU,, and the local thin curtain 
parameter 6 = (g2/4v)* (aa/&) are also listed in table 3. At X, = 0, U, = 16.2 em and 
do = 0.1356 em; thus 2W, = 3.66 and S = 0-7476 a t  X I  = 0. Apparently the values of 

paper). 
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8 (degrees), T 
equation (4) (dynes/cm) 

U, (cm/sec) using static 0 (degrees), equation 
X ,  (cm) Measured Equation (1) d (,urn) T measured (4) 

1.7 53.5 55.7 410 59.8 No wave - 
5.3 100-0 100-8 220 39.2 50 66 
9.4 134.5 134.9 163 33.1 42 68 

TABLE 4 

S a t  XI = 0 and 1.47 cm do not satisfy the condition of validity of Lin’s analysis, i.e. 
S 4 1. This is the reason why the local Weber numbers there exceed the predicted 
critical Weber number and yet the curtain is still stable. It appears that the rapid 
change of thickness in the region X < 1.47 is a stabilizing factor. Although the flow is 
expected to be unstable in this region, disturbances do not grow very much before they 
are advected into a region where they decay. To verify this conjecture based on 
experimental facts, one must carry out the stability analysis for thick liquid curtains 
for which 6 is not small. 

5. Conclusion 
Our experiments confirm the critical Weber number of & which was found experi- 

mentally by Brown (1961) and predicted by Lin (1980) only for thin liquid curtain 
such that (g2/4v)f ( d i / & )  < 1.  This thin curtain condition was used in Lin’s stability 
analysis and was implied in G.I.Taylor’s basic flow derivation. For thick liquid 
curtains the critical Weber number predicted by Lin is conservative. St’ability analyses 
and corresponding experiments for thick liquid curtains may contribute to a better 
understanding of the behaviour of viscous liquid sheets. In  such studies, the stability 
will probably depend on the Reynolds number and Froude number as well as the 
Weber number. 

The sinuous and varicose modes of curtain waves predicted by Lin were found in 
thin liquid curtains and the thin parts of thick liquid curtains. Excellent agreements 
have been found between the theory and experiments. The angle between the tangent 
to the curve of constant phase of sinuous waves and the vertical has been successfully 
exploited to determine the dynamic surface tension. The difference between the 
dynamic and the static surface tensions was found to be not measurable for a pure 
liquid but very significant for a liquid solution. A plausible explanation has been given 
for the observed significant difference. Careful studies of the diffusion toward and 
adsorption a t  the free surface of the solute may contribute to a better understanding of 
the physical nature of the dynamic surface tension. 
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